MCBO Magazin

Inhalt für jeden Tag

  • Start
  • Alltage
  • Finanzen
  • Gesundheit
  • Mode
  • Nachrichten
  • Sport
  • Tehnologie
  • Zeitschrift
  • Start
  • Alltage
  • Finanzen
  • Gesundheit
  • Mode
  • Nachrichten
  • Sport
  • Tehnologie
  • Zeitschrift
  • Nachrichten,  Finanzen

    Forscher entwickeln KI-System für eigenständiges Lernen ohne externe Belohnungen

    INTUITOR-Methode nutzt Selbstvertrauen des Modells als einziges Belohnungssignal und zeigt überlegene Generalisierung bei verschiedenen Aufgaben Wissenschaftler der UC Berkeley, Yale University und anderen Institutionen haben eine bahnbrechende Methode entwickelt, mit der große Sprachmodelle (LLMs) komplexe Denkfähigkeiten ohne externe Überwachung oder Belohnungssignale erlernen können. Die als INTUITOR bezeichnete Technik stellt einen bedeutenden Fortschritt im Bereich des Reinforcement Learning from Internal Feedback (RLIF) dar. Neues Paradigma des intrinsischen Lernens Das herkömmliche Training von KI-Modellen für komplexe Denkaufgaben basiert typischerweise auf Reinforcement Learning with Verifiable Rewards (RLVR), das kostspielige, domänenspezifische Überwachung erfordert. INTUITOR durchbricht diese Beschränkung, indem es ausschließlich auf das Selbstvertrauen des Modells – die sogenannte „Self-Certainty“ – als Belohnungssignal setzt. Die…

    weiterlesen

    Das könnte dich ebenfalls interessieren

    Vorteile von alters-homogenen Gruppen in der Gesellschaft

    August 14, 2024

    Die Vorteile eines Maklers: Warum sich die Beauftragung lohnt

    September 11, 2024

    Warum sind die Pollenwerte in diesem Jahr so hoch und verschärfen Heuschnupfen?

    Juni 23, 2025
Ashe Theme von WP Royal.