MCBO Magazin

  • Start
  • Alltage
  • Finanzen
  • Gesundheit
  • Mode
  • Nachrichten
  • Sport
  • Tehnologie
  • Zeitschrift
  • Start
  • Alltage
  • Finanzen
  • Gesundheit
  • Mode
  • Nachrichten
  • Sport
  • Tehnologie
  • Zeitschrift
  • Nachrichten,  Finanzen

    Forscher entwickeln KI-System für eigenständiges Lernen ohne externe Belohnungen

    INTUITOR-Methode nutzt Selbstvertrauen des Modells als einziges Belohnungssignal und zeigt überlegene Generalisierung bei verschiedenen Aufgaben Wissenschaftler der UC Berkeley, Yale University und anderen Institutionen haben eine bahnbrechende Methode entwickelt, mit der große Sprachmodelle (LLMs) komplexe Denkfähigkeiten ohne externe Überwachung oder Belohnungssignale erlernen können. Die als INTUITOR bezeichnete Technik stellt einen bedeutenden Fortschritt im Bereich des Reinforcement Learning from Internal Feedback (RLIF) dar. Neues Paradigma des intrinsischen Lernens Das herkömmliche Training von KI-Modellen für komplexe Denkaufgaben basiert typischerweise auf Reinforcement Learning with Verifiable Rewards (RLVR), das kostspielige, domänenspezifische Überwachung erfordert. INTUITOR durchbricht diese Beschränkung, indem es ausschließlich auf das Selbstvertrauen des Modells – die sogenannte „Self-Certainty“ – als Belohnungssignal setzt. Die…

    weiterlesen

    Das könnte dich ebenfalls interessieren

    Die Vorteile von Cross Docking für effiziente Logistikprozesse

    Februar 15, 2025

    Intelligente Moleküle und ihre Wirkung in der modernen Chemie

    April 25, 2025

    Was ist Flutter? Einführung in das Framework für Apps

    März 31, 2025
Ashe Theme von WP Royal.